Senin, 05 November 2012

Metabolisme Karbohidrat


Metabolisme Karbohidrat

v Definisi Karbohidrat
Secara umum definisi karbohidrat adalah senyawa organik yang mengandung atom Karbon, Hidrogen dan Oksigen, dan pada umumnya unsur Hidrogen clan oksigen dalam komposisi menghasilkan H2O. Di dalam tubuh karbohidrat dapat dibentuk dari beberapa asam amino dan sebagian dari gliserol lemak. Akan tetapi sebagian besar karbohidrat diperoleh dari bahan makanan yang dikonsumsi sehari-hari, terutama sumber bahan makan yang berasal dari tumbuh-tumbuhan.
Sumber karbohidrat nabati dalam glikogen bentuk glikogen, hanya dijumpai pada otot dan hati dan karbohidrat dalam bentuk laktosa hanya dijumpai di dalam susu. Pada tumbuh-tumbuhan, karbohidrat di bentuk dari basil reaksi CO2 dan H2O melalui proses foto sintese di dalam sel-sel tumbuh-tumbuhan yang mengandung hijau daun (klorofil). Matahari merupakan sumber dari seluruh kehidupan, tanpa matahari tanda-tanda dari kehidupan tidak akan dijumpai.
Karbohidrat menjadi salah satu komponen makanan yang kompleks. Komponen inilah yang menjadi salah satu bahan dalam proses metabolisme. Karbohidrat merupakan senyawa yang terbentuk dari molekul karbon, hidrogen dan oksigen. Senyawa biologis ini hanya terdapat dalam jumlah 1% dari keseluruhan tubuh manusia, diolah dalam tubuh sebagai bahan makanan, dicadangkan dalam bentuk glikogen dan digunakan sebagai bahan bakar sel, juga dibutuhkan dalam pembentukan tulang rawan. Sumber karbohidrat yang paling banyak berasal dari tumbuhan.
Dalam proses untuk menghasilkan energi, semua jenis karbohidrat yang dikonsumsi akan masuk ke dalam sistem pencernaan dan juga usus halus, terkonversi menjadi glukosa untuk kemudian diabsorpsi oleh aliran darah dan ditempatkan ke berbagai organ dan jaringan tubuh. Molekul glukosa hasil konversi berbagai macam jenis karbohidrat inilah yang kemudian akan berfungsi sebagai dasar pembentukan energi di dalam tubuh. Melalui berbagai tahapan dalam proses metabolisme, sel-sel yang terdapat di dalam tubuh dapat mengoksidasi glukosa menjadi CO2 & H2O dimana proses ini juga akan disertai dengan produksi energi. Proses metabolisme glukosa yang terjadi di dalam tubuh ini akan memberikan kontribusi hampir lebih dari 50% bagi ketersediaan energi. Di dalam tubuh, karbohidrat yang telah terkonversi menjadi glukosa tidak hanya akan berfungsi sebagai sumber energi utama bagi kontraksi otot atau aktifitas fisik tubuh, namun glukosa juga akan berfungsi sebagai sumber energi bagi sistem syaraf pusat termasuk juga untuk kerja otak. Selain itu, karbohidrat yang dikonsumsi juga dapat tersimpan sebagai cadangan energi dalam bentuk glikogen di dalam otot dan hati. Glikogen otot merupakan salah satu sumber energi tubuh saat sedang berolahraga sedangkan glikogen hati dapat berfungsi untuk membantu menjaga ketersediaan glukosa di dalam sel darah dan sistem pusat syaraf.
Pada ikan pencernaan karbohidrat dimulai pada segmen lambung, hal ini disebabkan oleh karena hewan akuatik ini tidak memiliki air liur seperti pada hewan darat, namun secara intensif terjadi pada usus yang memiliki enzim amylase pankreatik.
Laju penyerapan karbohidrat pada ikan tampaknya berkaitan erat dengan kompleksitas karbohidrat dalam makanan. Hasil penelitian menunjukkan bahwa 2 jam setelah pemberian makanan dalam bentuk 95% glukosa sudah terserap sedangkan dekstrin dan α strakh masing-masing baru terserap sebanyak 65% dan 4%. Makanan berbentuk α strakh diserap sebanyak 87% dalam periode waktu 3-10 jam. Adanya keterkaitan antara kompleksitas sumber karbohidrat dengan kecepatan/laju penyerapan ini akan berdampak pada tingkat keberadaan glukosa dalam darah. Akibat selanjutnya akan terkait dengan tingkat pemanfaatannya oleh tubuh. Pada ikan yang sistem pencernaannya telah sempurna (definitif), penggunaan karbohidrat yang komplek dalam pakan akan lebih bernilai guna dibandingkan dengan karbohidrat sederhana.

v Metabolisme karbohidrat
Setelah melalui dinding usus halus, glukosa akan menuju ke hepar melalui vena portae. Sebahagian karbohidrat ini diikat di dalam hati dan disimpan sebagai glikogen, sehingga kadar gula darah dapat dipertahankan dalam batas-batas normal (80-120 mg%).
Karbohidrat yang terdapat dalam darah, praktis dalam bentuk glukosa, oleh karena fruktosa dan galaktosa akan diubah terlebih dahulu sebelum memasuki pembuluh darah.
Apabila jumlah karbohidrat yang dimakan melebihi kebutuhan tubuh, sebagian besar (2/3) akan disimpan di dalam otot dan selebihnya di dalam hati sebagai glikogen. Kapasitas pembentukan glikogen ini sangat terbatas (maksimum 350 gram), dan jika penimbunan dalam bentuk glikogen ini telah mencapai batasnya, kelebihan karbohidrat akan diubah menjadi lemak dan disimpan di jaringan lemak. Bila tubuh memerlukan kembali enersi tersebut, simpanan glikogen akan dipergunakan terlebih dahulu, disusul oleh mobilisasi lemak. Jika dihitung dalam jumlah kalori, simpanan enersi dalam bentuk lemak jauh melebihi jumlah simpanan dalam bentuk glikogen.
Sel-sel tubuh yang sangat aktif dan memerlukan banyak enersi, mendapatkan enersi dari basil pembakaran glukosa yang di ambil dari aliran darah. Kadar gula darah akan diisi kembali dari cadangan glikogen yang ada di dalam hati. Kalau enersi yang diperlukan lebih banyak lagi, timbunan lemak dari jaringan lemak mulai dipergunakan. Dalam jaringan lemak diubah ke dalam zat antara yang dialirkan ke hati.
Skema.  Perubahan karbohidrat di dalam tubuh

Disini zat antara itu diubah menjadi glikogen, mengisi kembali cadangan glikogen yang telah dipergunakan untuk meningkatkan kadar gula darah. Peristiwa oksidasi glukosa di dalam jaringan-jaringan terjadi secara bertahap dan pada tahap-tahap itulah enersi dilepaskan sedikit demi sedikit, untuk dapat digunakan selanjutnya.
Melalui suatu deretan proses-proses kimiawi, glukosa dan glikogen diubah menjadi asam pyruvat. Asam pyruvat ini merupakan zat antara yang sangat penting dalam metabolisme karbohidrat. Asam pyruvat dapat segera diolah lebih lanjut dalam suatu proses pada "lingkaran Krebs". Dalam proses siklis ini dihasilkan CO2 dan H2O dan terlepas enersi dalam bentuk persenyawaan yang mengandung tenaga kimia yang besar yaitu ATP (Adenosin Triphosphate). ATP ini mudah sekali melepaskan enersinya sambi}berubah menjadi ADP (Adenosin Diphos phate). Sebagian dari asam piruvat dapat diubah menjadi "asam laktat". Asam laktat ini dapat keluar dari sel-sel jaringan dan memasuki aliran darah menuju ke hepar.
Di dalam hepar asam laktat diubah kembali menjadi asam pyruvat dan selanjutnya menjadi glikogen, dengan demikian akan menghasilkan enersi.
Hal ini hanya terdapat di dalam hepar, tidak dapat berlangsung di dalam otot, meskipun di dalam otot terdapat juga glikogen. Sumber glikogen hanya berasal dari glukosa dalam darah. Metabolisme karbohidrat selain di pengaruhi oleh enzim-enzim, juga diatur oleh hormon-hormon tertentu. Hormon Insulin yang dihasilkan oleh "pulau-pulau Langerhans" dalam pankreas sangat memegang perananan penting. Insulin akan mempercepat oksidasi glukosa di dalam jaringan, merangsang perubahan glukosa menjadi glikogen di dalam sel-sel hepar maupun otot. Hal ini terjadi apabila kadar glukosa di dalam darah meninggi. Sebaliknya apabila kadar glukosa darah menurun, glikogen hati dimobilisasikan sehingga kadar glukosa darah akan menaik kembali. Insulin juga merangsang glukoneogenesis, yaitumengubah lemak atau protein menjadi glukosa. Juga beberapa horrnon yang dihasilkan oleh hypophysis dan kelenjar suprarenal merupakan pengatur-pengatur penting dari metabolisme karbohidrat.
Enzim sangat diperlukan pada proses-proses kimiawi metabolisme zat-zat makanan. vitamin-vitamin sebagian dari enzim, secara tidak langsung berpengaruh pada metabolisme karbohidrat ini. Tiamin (vitamin B1) diperlukan dalam proses dekarboksilase karbohidrat. Kekurangan vitamin B1 akan menyebabkan terhambatnya enzim-enzim dekarboksilase, sehingga asam piruvat dan asam laktat tertimbun di dalam tubuh. Penyakit yang ditimbulkan akibat defisiensi vitamin B1 itu dikenal sebagai penyakit beri-beri.

v  Tahapan Metabolisme Karbohidrat
Tahapan metabolisme karbohidrat terdiri dari 3 fase yaitu sebagai berikut :
1.      Glikolisis
2.      Siklus Kreb
3.      Fosforilasi Oksidatif

1.      GLIKOLISIS
Pada dasarnya metabolisme glukosa dapat dibagi dalam dua bagian yaitu yang tidak menggunakan oksigen ( anaerob ) dan yang menggunakan oksigen ( aerob ). Reaksi anaerob terdiri dari serangkaian reaksi yang merubah glukosa menjadi asam laktat. Proes ini yang disebut glikolisis. Tiap reaksi dalam proses ini menggunakan enzim tertentu.
Saat glikolisis (penguraian gula), glukosa (gula berkarbon enam) diuraikan menjadi dua gula berkarbon tiga. Glukosa merupakan molekul gula yang termasuk monosakarida dengan salah satu atom karbonnya merupakan gugus karbonil dan atom karbon lainnya terikat pada gugus hidroksil.  Setelah glukosa diubah menjadi gula yang lebih kecil, kemudian dioksidasi dan atom sisanya disusun ulang untuk membentuk dua molekul piruvat. Proses glikolisis menghasilkan 2 ATP, 2 NADH dan molekul organik untuk siklus Krebs.
Skema .Tahapan Glikolisis
Ø  Proses perubahan glukose menjadi asam piruvat atau asetil coenzim-A
Ø  Glikolisis terjadi di sitoplasma
Ø  Glukose tidak dapat langsung diffusi ke sel
Ø  Glukose harus berikatan dulu dengan carrier: G + C → GC → GC dapat berdiffusi kedalam sel
Ø  Didalam sel GC → G + C
Ø  C keluar sel lagi untuk mengikat G yang lain → sampai semua G masuk sel
Ø  Proses ini dipercepat oleh H. Insulin, jika H. Insulin kurang → proses masuknya G kedalam sel lambat → G menumpuk didalam darah → DM
Ø  G di sitoplasma mengalami fosforilasi → glukose 6-PO4 (enzim glukokinase)
Ø  Fruktokinase → fruktose → fruktose 6-PO4
Ø  Galaktokinase → galaktose → galaktose 6-PO4

  • Glikolisis: proses perubahan glukose menjadi asam piruvat atau asam laktat
  • Glikolisis terdiri 2 lintasan:
  • Katabolisme glukosa (glikolisis) melalui triose (dihidroksi aseton fosfat atau gliseraldehid 3-PO4) disebut lintasan Embden Meyerhof
  • Katabolisme glukosa (glikolisis) melalui 6-fosfoglukonat disebut lintasan oksidatif langsung (pintas heksosmonofosfat)



SIKLUS KREBS
Siklus Krebs adalah siklus asam sitrat, disebut siklus Krebs karena seorang saintis Jerman-Inggris yang bernama Hans Krebs yang membeberkan siklus ini. [1] Sebelum masuk ke siklus Krebs, mula-mula piruvat diubah menjadi asetil CoA. [1] Kemudian asetat dari asetil CoA masuk sebagai molekul berkarbon dua dan bertemu dengan oksaloasetat untuk membentuk sitrat. [1] Langkah-langkah berikutnya menguraikan sitrat kembali menjadi oksaloasetat sehingga membentuk siklus dengan melepaskan karbon dioksida, ATP dan molekul-molekul pembawa elektron
1
  • Proses perubahan asetil co-A → H
  • Proses ini terjadi didalam mitokondria
  • Pengambilan asetil co-A di sitoplasma dilakukan oleh: oxalo asetat → proses pengambilan ini terus berlangsung sampai asetil co-A di sitoplasma habis
  • Jika dalam asupan nutrisi kekurangan KH → akan kekurangan oxaloasetat
2

  • Kekurangan oxaloasetat → pengambilan asetil co-A di sitoplasma terhambat → asetil co-A menumpuk di sitoplasma
  • Penumpukan asetil co-A → berikatan sesama asetil co-A → asam aseto asetat
  • Asam aseto asetat → senyawa tidak setabil → mudah mengurai: aseton + asam β hidroksi butirat


  • Ketiga senyawa: asam aseto asetat, aseton dan asam β hidroksi butirat → disebut Badan Keton
  • Meningkatnya badan keton didalam darah → ketosis
  • Badan keton bersifat racun bagi otak → koma, karena biasanya terdapat pada penderita DM → koma diabeticum

FOSFORILASI OKSIDATIF
Rantai transpor elektron menerima elektron dari produk hasil perombakan glikolisis dan siklus Krebs dan mentransfer elektron dari satu molekul ke molekul lain. [1] Energi yang dilepaskan dari setiap pelepasan elektron tersebut digunakan untuk membuat ATP
  • Dalam proses rantai respirasi dihasilkan energi yang tinggi → energi tsb ditangkap oleh senyawa yang disebut ATP
  • Fosforilasi oksidatif adalah proses pengikatan fosfor menjadi ikatan berenergi tinggi dalam proses rantai respirasi

  • Fosforilasi oksidatif: proses perubahan ADP → ATP dengan cara mengambil energi yang dihasilkan Rantai Respirasi (reaksi H + O2 → H2O)


RINGKASAN METABOLISME KARBOHIDRAT
  • Glikolisis: perubahan glukose → asam piruvat
  • R/ Glukose + 2 ADP + 2 PO4 → 2 asam piruvat + 2 ATP + 4 H
  • Hasil utama glikolisis: asam piruvat
  • Energi dihasilkan: 2 ATP
  • Tempat reaksi glikolisis: sitoplasma
  • Terdiri 2 lintasan: Embden Meyerhof dan Heksosmonofosfat

  • Siklus Kreb: perubahan asetil co-A → H
  • R/ 2 Asetil Ko-A + 6 H2O + 2 ADP → 4 CO2 + 16 H + 2 Ko-A + 2 ATP
  • Hasil utama: H
  • Energi dihasilkan: 2 ATP
  • Tempat berlangsung: mitokondria
  • Sisa metabolisme CO2 berasal dari hasil samping Siklus Krebs/ Siklus Asam Sitrat/ Siklus Asam Trikarboksilat

  • Fosforilasi oksidatif: proses perubahan ADP → ATP dengan cara mengambil energi yang dihasilkan Rantai Respirasi (reaksi H + O2 → H2O)
  • R/ 2 H + ½ O2 + 2e + ADP → H2O + ATP
  • Energi yang dihasilkan: 34 ATP
  • Total hasil energi metabolisme karbohidrat: 38 ATP

DAFTAR PUSTAKA
http://Respirasi_selular karbohidrat.htm
http://BIOKIMIA GIZI.htm
Poedjiadi, Anna. 2006. Dasar – Dasar Biokimia. Jakarta: UI-Press


Tidak ada komentar:

Posting Komentar